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Abstract 

Using the push-pull superfusion technique for determining the in vivo release the neurotransmitters catecholamines, 
histamine, GABA and the neuromodulator nitric oxide in distinct brain areas revealed that they are released according 
to ultradian rhythms with frequencies of 135-36 min per cycle and hyperdian rhythms with frequencies of less than 30 
min (24 -10 min) per cycle. The electrical activity of EEG delta and theta waves also varies rhythmically. The pacemaker 
of the EEG and histamine rhythm is located in the hypothalamus. Simultaneous recordings of EEG and histamine release 
revealed that high neuronal activity of EEG coincides with low histamine release rates and vice versa. The significance 
of these rhythms for brain function and modulation of the activity of peripheral organs by the brain is discussed. 
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1. Introduction

Use of the push-pull superfusion technique (PPST) makes it possible to determine in the synapse continuously for 
several hours and in short time periods minute concentrations of neurotransmitter and neuromodulators released in 
distinct brain areas from their neurons. EEG waves may be simultaneously recorded [1-4]. Our studies revealed that in 
all brain areas investigated the spontaneous release rates of neurotransmitters and nitric oxide are not constant but 
vary according to ultradian rhythms and rhythms shorter that the ultradians, the hyperdian rhythms observed 
under particular experimental conditions. 

2. Results and discussion

2.1. Ultradian rhythms 

2.1.1. Catecholamines 

Superfusion of the posterior hypothalamus of anaesthetized cats through the PPS over 6 hours and collection of the 
superfusates in time periods of 15 min revealed that the release rates of the catecholamines dopamine, noradrenaline 
and adrenaline varied from sample to sample. When the peak release rates of each experiment were synchronized, 5 
peaks with high release rates in 6 hours appeared (Fig. 1). Thus, in this region of the cat brain the release rates of all 
three catecholamines are not constant but fluctuate according to an ultradian rhythm with a frequency of 70 min per 
cycle. Similar frequencies were observed in the anterior rat hypothalamus [5, 6]. Findings are summarized in Table 1. 
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Figure 1 Spontaneous release of endogenous catecholamines in the cat posterior hypothalamus after synchronization 
of values shown in Fig. 1. Samples were continuously collected in 15 min periods. The last peak of high rate of release 

was taken as the antepenultimate sample (5.5 h) and the other samples were re-arranged accordingly. After this 
synchronization five peaks of high release became visible in each experiment. For differences between phases of high 
rate of release (5 phases, number of observations 85–95 for each catecholamine) and phases of low rates of release (5 

phases, number of observations 85–95 for each catecholamine): noradrenaline, adrenaline, dopamine P < 0.001 
(Philippu et al. 1979). Reproduced with kind permission of Springer-Verlag 

Table 1 Ultradian and hyperdian rhythms of NO, neurotransmitter and EEG in various brain regions 

 Animal 

Species 

NAc PH   

 

AH   NTS LC MAN MB 

NO an .rat 24*       

EEG an. rat    100      

DA an. cat  70  70 60   10* 37   

NA an. cat  70 70 60 10* 52   

A an. cat  70 70 60 10*  36   

HI an. cat 60  60       135 9.5* 90 18* 

HI an. Rat 

co. Rat 

 115 

90 

     

HI co. 

rabbit 

70 70 70      

GABA co. rat  65      

GABA             an.cat 70 70      

Ultradian and hyperdian rhythms in min. Samples were collected in time periods of 10 min or less than 2.5* min. NAc 
nucleus accumbens, PH posterior hypothalamus, AH anterior hypothalamus, NTS  nucleus of the solitary tract, LC locus 
coeruleus, MAN medial amygdaloid nucleus, MB mammillary body, NO nitric oxide, DA dopamine, NA noradrenaline. A 
adrenaline, HI histamine. GLU glutamate, ARG arginine, Tau taurine, an. anaesthetized, co. conscious. For references see 
text. Modified from [7}. 
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Most of the noradrenergic and adrenergic neurons ending in the hypothalamus arrive from the locus coeruleus [8, 9], 
which also contains catecholaminergic nerve endings [9, 10]. Investigation of the catecholamine release in the locus 
coeruleus using the PPST showed that in this area the release of dopamine, noradrenaline and adrenaline also oscillates 
with a frequency of 37, 52 and 36 min per cycle, respectively [11]. The dissimilar ultradian rhythms of noradrenaline 
from those of dopamine and adrenaline point to the releaseof the amines from different neuronal sites (Table 1). 

Similar ultradian rhythms were found in the nucleus of the solitary tract [12]. 

2.1.2. Amino acids 

 Similar to catecholamines, the inhibitory amino acid GABA is released in the posterior hypothalamus of conscious and 
anaesthetized rats according to an ultradian rhythm with a frequency of 65 min and 70 min per cycle, respectively [13]. 
Hypothalamic GABA originates to a great part from GABAergic neurons, because its release is enhanced on superfusion 
with potassium rich artificial cerebrospinal fluid and greatly reduced on hypothalamic superfusion with the neurotoxin 
tetrodotoxin [14].  

2.1.3. Histamine 

 

Figure 2 Two states of electrical activity in the posterior hypothalamus of the anesthetized rat. I Period of 
highelectrical activity, II period of low electrical activity. Calibrations are indicated by the bars. Representative 

experiment showing the relative power the EEG 1-minmean power values in the delta (1.25–4.50 Hz) and theta (4.75–
6.75 Hz) frequency waves and the release rates of histamine. Ordinates: B Relative power intensities of the delta and 

theta frequency waves, C Release of histamine as fmol/15 min, abscissa: time in min. Histamine: means of 7 
experiments ± S.E.M. Correlation coefficients: histamine versus delta frequency wave R = −0.5797 (P <0.001), 

histamine versus theta frequency wave R = 0.5106 (P < 0.01). Reproduced from Prast et al. 1997 with kind permission 
of Springer-Verlag 

The cell bodies of histaminergic neurons ending in the posterior hypothalamus are located in the tuberomammillary 
nucleus [15]. In the cat posterior hypothalamus the release of histamine oscillates with a frequency of one cycle per 60 
min. In the hypothalamus of conscious and anaesthetized rats the frequency is 90 and 115 min, respectively, while in 
the posterior and anterior hypothalamus of the conscious rabbit (Table 1), the frequency amounts to is 70 min [16]. 
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In the median amygdaloid nucleus and the mamillary body histamine release rates fluctuate with frequencies of one 
cycle every 135 min and 90 min, respectively (Table 1). The bilateral electrocoagulation of the suprachiasmatic nucleus 
decreased the release of histamine in the mamillary body without influencing it in the amygdaloid nucleus. indicating 
that in the mamillary body the release of histamine is regulated by excitatory neurons arising in the suprachiasmatic 
nucleus [17].  

Interestingly, the long frequencies of histamine release are similar to those of EEG power (Table 1). The simultaneous 
determination of histamine release rates and EEG recordings has shown that the low histamine release rates coincide 
timely with high neuronal activity of EEG (Figure 2) and vice versa [18]. The close relationship between the fluctuations 
of histamine release and EEG power is underlined through the observation that agonists ad antagonists of histamine 
receptors influence the EEG rhythm (19). 

The pacemaker for the EEF power oscillations is obviously in the rostral arcuate nucleus and median eminence, because 
the oscillations disappear after electrocoagulation of these areas[7, 20, 21]. Possibly this pacemaker is also responsible 
for the oscillations of histamine release rates in the hypothalamus [14, 18, 20, 22, 23]. 

2.2. Hyperdian rhythms 

As already mentioned, in all investigations described above the superfusates of the various brain regions were collected 
in time periods of 10 or 15 min. To be able to collect them in time periods down to 10 s, the speed of superfusion was 
slightly increased so as to increase the volume per sample necessary for the biochemical analyses. This is only possible 
when PPST is used and makes it feasible to investigate whether rhythms exist which are more rapid than the described 
ultradian rhythms. These very rapid rhythms are named hyperdian rhythms.  

2.2.1. Catecholamines  

In the cat nucleus of the solitary tract collection of the samples in short time periods of 2.5 min or less revealed that all 
three catecholamines [24] are additionally released according to a rapid hyperdian rhythm with the frequency of 10 
min per cycle (Table 1).  

2.2.2. Histamine  

Continuous collection of the superfusate in time periods of 2 min instead of 20 min as above disclosed that in the 
amygdala and mamillary body of the anaesthetized cat [25] histamine is additionally released according hyperdian 
rhythms with frequencies of 19.5 and 18 min, respectively (Table 1).  

2.2.3. Nitric Oxide  

Nitric oxide is considered to be the universal modulator of brain function [26 - 28]. To determine the release of nitric 
oxide under real-time conditions, a sensitive and specific amperometric sensor was inserted into the PPC. In the nucleus 
accumbens of rats (Table 1) the values of nitric oxide also oscillate with a frequency of one cycle per 24 min [28, 29]. 
This finding seems to be of particular interest is one considers the modulation of brain activity by nitric oxide [27,28]. 
Surprisingly is the similarity of the duration of the hyperdian rhythm in the release of nitric oxide and the duration of 
the hyperdian rhythm that modulates the release of histamine (see above). 

3. Conclusion 

Neurotransmitters and neuromodulators like nitric oxide are released in the brain according to ultradian and hyperdian 
rhythms. The rhythmic changes of the transmitter concentrations in the synaptic cleft influence the activity of peripheral 
systems, such as the cardiovascular system. Further investigations will clarify the importance of these biorhythms for 
the activity of central and peripheral neurons and their mutual interferences. A pacemaker located in the rostral arcuate 
nucleus and median eminence is responsible for the EEF power oscillations in the hypothalamus because they disappear 
after electrocoagulation of these areas. Possibly this pacemaker also generates the oscillations of histamine release rates 
in the hypothalamus. 
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