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Abstract 

Pentameric ligand-gated ion channels (pLGICs), including GABA type A receptors (GABAARs), play crucial roles in 
neuronal signaling through their ability to mediate inhibitory neurotransmission. Despite the significant sequence 
variation among pLGIC subunits, few single nucleotide polymorphisms (SNPs) occur in coding regions, particularly for 
receptors critical to maintaining neural excitability. The naturally occurring mutation 𝛾2 K289M, linked to generalized 
epilepsy and febrile seizures, exhibits reduced GABA-evoked current amplitudes and altered receptor kinetics. In this 
study, we employed molecular dynamics simulations to investigate the structural and functional impacts of the K289M 
mutation at varying temperatures (300K and 315K). Our findings indicate that the mutation leads to a narrowed pore 
in the receptor, significantly increasing the energetic barrier for chloride ion conduction, particularly at elevated 
temperatures. Notably, we observed that the K289M mutation disrupts electrostatic interactions that stabilize the wild-
type receptor, suggesting a critical role for charge repulsion in maintaining channel integrity. This research enhances 
our understanding of the molecular mechanisms underlying epilepsy-associated mutations in GABAARs and 
underscores the importance of temperature-dependent effects on receptor dynamics. 

Keywords: GABA Type A Receptors; 𝛾 2 K289M Mutation; Pentameric Ligand-Gated Ion Channels (pLGICs); 
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1. Introduction

Pentameric Ligand-gated Ion Channels (pLGICs) are essential components of the post-synaptic membrane, serving both 
inhibitory and excitatory roles. pLGIC sequence varies significantly within and between prokaryotes and eukaryotes, 
with typical homologies of about 30%. pLGIC function can be quite sensitive to even small differences in sequence, but 
numerous pLGIC structures have now demonstrated significant structural conservation despite functional variation. 
This property has made it challenging to isolate the roles of various pLGIC components or sequence variations in subtle 
functional effects. 

Despite the high sequence variation among pLGIC subunits, even for those forming a heteromeric channel, few single 
nucleotide polymorphisms (SNPs) are found among populations within coding regions for a specific subunit. Mutations 
causing loss of function in inhibitory receptors or gain of function in excitatory receptors can result in seizures induced 
by neuron overexcitation. Many naturally occurring mutations are associated with various forms of epilepsy, with 
several relevant mutations identified even before the use of genome-wide association studies. The molecular 
mechanisms underlying the effect of nearly all mutations on signaling are unknown. 

GABA is the primary inhibitory neurotransmitter in the central nervous system; inhibition is partially transduced by 
extracellular binding to the type A GABA receptor, an anionic pL GIC. Numerous atoms with calming, anxiolytic, and 
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sedative properties are positive modulators of the GABAAR, including neurosteroids, benzodiazepines, and inhalational 
and intravenous general anesthetics. Negative modulators, such as pregnenolone sulfate, can induce seizures, as can 
certain mutations. Seizures associated with inherited mutations typically require conditions that are found only 
infrequently; survival is unlikely in the presence of consistent seizures. GABAAR receptors with these mutations are 
therefore known a priori to be functional under typical conditions but dysfunctional under well-defined alternate 
conditions, making them promising candidates for identifying the role of the mutated residue. 

Every subunit comprises of an extracellular agonist-restricting space (ECD) and a transmembrane space containing a 
four-helix pack with helices named (M1-M4). The M2 helices line the pore, and the M2-M3 circle interfacing the M2 and 
M3 helices communicates straightforwardly with the ECD. The circle has for quite some time been speculated to” 
impart” agonist restricting to the transmembrane space, with a few changes reads up showing the significance for 
agonist responsiveness of short-range alluring electrostatic communications, for example, salt-spans, between the M2-
M3 circle and the ECD.  

In GABAAR subunits the M2-M3 loop contains a basic residue appearing at the homologous positions of 𝛼279, 𝛽274, or 
𝛾289 ,documented as M2 24 ′  in the excellent numbering plan proposed in. Harrison and colleagues exhibited that 
charge-inversion of 𝛼279 decreased agonist responsiveness (EC50) which was restorable by means of extra charge-
inversion of 𝛼 D57 or 𝛼D149, both inside the ECD and expected to be close to the M2-M3 circle. Greatest entire cell 
current, be that as it may, was diminished by around 1/3 upon the single 𝛼𝐷279𝐾 change, and further decreased by 
about a similar sum with the second transformation of 𝛼 D57K or 𝛼D149K, recommending a huge job for 𝛼279𝐾 in 
settling the open state past shaping a salt-span with the ECD. Comparable way of behaving was seen in the nicotinic 
acetylcholine receptor (nAChR), upon charge-inversion of 𝛼 R209 in M1 and 𝛼 E45 in the ECD. 

A natural but uncommonly occurring SNP at the homologous residue in the 𝛾 subunit (𝛾2 K289), further suggests an 
additional role for this residue beyond gating, because the 𝛾  subunit does not form GABA binding cavities. The 
𝛾2:K289M transformation has been accounted for in families with summed up epilepsy and febrile seizures plus(GEFS+), 
a summed up aggregate that frequently incorporates just febrile (fever-caused) seizures until about age 11, yet can 
likewise incorporate less extreme myoclonic, atonic, or nonattendance seizures at typical internal heat level. In 𝛼1𝛽2𝛾2 
K289M receptors, GABA-evoked current sufficiency was emphatically diminished comparative with the, while in 
𝛼1𝛽3𝛾2K289M receptors the transformation didn’t influence current amplitudes yet expanded the deactivation rate. In 
the last receptors, flows had decreased mean open times, to some extent because of flickering. In hippocampal neurons 
containing GABAAR with 𝛾2:K289M subunits sped up deactivation of inhibitory post synaptic flows was likewise noticed. 

Little information has been available regarding the effect of the mutation on GABAAR structure and dynamics. Using a 
homology model of the GABAAR receptor based on the medium resolution cryo electron microscopy structure of the 
nicotinic Acetylcholine Receptor (nAChR), Brownian Dynamics Simulations of ion conduction were used to suggest that 
mutant receptors display reduced conductance due to reduced affinity of the ion for the ion channel. However, the recent 
x-ray structures of eukaryotic and prokaryotic homologs have suggested that alignment of the sequence with the 
electron density map in the M2 helices is likely incorrect in the structure used for these simulations. Furthermore, these 
simulations do not contain explicit representations of water or lipid molecules. 

The temperature dependence of this mutation suggests a significant role for entropy and conformational fluctuations 
in determining its effects. Here we conduct molecular dynamics simulations with multiple replicas of the 𝛾2 K289 and 
M289 forms of the receptor, at both lower and higher temperatures. We observe a moderately narrowed pore in the 
M289 receptor at 300K, and a significantly narrowed pore at 315K. Through adaptive biasing force (ABF) calculations, 
we demonstrate that the effects at 315K result in a substantially higher barrier for conduction of a chloride ion. 

𝛾2  K289 was not observed to form salt bridges with the ECD, and these conformational effects showed no clear 
correlation to any salt-bridging pattern. We propose instead that the five conserved basic residues at this position form 
a ring of positive charge that effectively pushes the five M2-M3 loops away from the center, pulling M2 helices with it, 
and stabilizing the open state. Neutralizing one of the charges as with 𝛾2𝐾289𝑀 reduces this repulsion. When it is 
combined with a temperature increase that softens the conformational preferences resulting from remaining 
interactions common to both K and M receptors, the non-temperature dependent change in electrostatic repulsions 
dominates. 

We present a simple variational theory that quantitatively predicts the effect of 𝛾2:K289M on the preferred separation 
of M2-M3 loop charges, using only the mean and standard deviation of the separation in the wild type 𝛾2:K289 channel. 
Temperature dependence appears through both the effect of temperature on the standard deviation and as a linear term 
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in the theory. The success of the theory supports a critical role for these electrostatic repulsions in stabilizing the wild-
type receptor and also in transducing the effects of the mutation. 

(A)Side View of EC and TM domain showing 𝛾 subunit in blue ; (B) View of TM domain, looking down on the membrane 
from the extracellular region, where each subunit(colored as in A) comprises of a four helix bundle(M1-M4). M1 is gray, 
M2 is purple, M3 is pink and M4 is ochre; Side view (C) and view from the top-down to (D) the TM domain showing the 
mutation K289M in the M2-M3 loop and the LEU residues at the 9’ location. 

 

Figure 1 (A) Side View of EC and TM domain showing 𝜸 subunit in blue; (B) View of TM domain, looking down on the 
membrane from the extracellular region, where each subunit (colored as in A) comprises of a four-helix bundle(M1-
M4). M1 is gray, M2 is purple, M3 is pink and M4 is ochre; Side view (C) and view from the top-down to (D) the TM 

domain showing the mutation K289M in the M2-M3 loop and the LEU residues at the 9’ location 

2. Homology Models 

A high-resolution structure of a GABAAR was not available until the recent publication of 3Å resolution structure for a 
𝛽3 homopentamer. In the transmembrane domain, homology between GABAAR𝛼 or 𝛾 to GABAAR𝛽 is not significantly 
improved relative to homology between GABAAR𝛼/𝛾 subunits and GluCl𝛼 (need numbers), and as a result homology 
model of 𝛼𝛽𝛾GABAAR built on the GABAAR𝛽3 homopentamer are not expected to be significantly improved relative to 
those based on GluCl. The framework utilized in this paper compares to Demonstrate 1 - CHOL from Reference, and was 
worked with GluCl (PDB code: 3RHW) as a layout as well as the arrangements distributed in Ref. Further legitimization 
and subtleties on this model can be tracked down in Reference 

2.1. System Setup 

This manuscript considers data from four simulations at 300K and four simulations at 315K, with 2 wild type (termed 
K1, K2) and 2 mutants (M1, M2). The frameworks were ready as in Ref, by implanting the protein in a lipid bilayer made 
out of 4:1 phosphatidylcholine (POPC): cholesterol mixture built using CHARMM Membrane builder, with the final 
system containing 268 POPC and 71 membrane CHOL molecules. In addition to membrane cholesterol, this model 
includes cholesterol docked to five pseudo-symmetric intersubunit sites, with implications and justification for this 
decision reported in. The frameworks were solvated utilizing the SOLVATE module in VMD and killing particles were 
added to carry the framework to a 0.15M salt focus utilizing the AUTOIONIZE module. The last framework contained 
around 160,000 iotas. 
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2.2. Simulation Methods 

All recreations involved the CHARM22-CMAP force field with torsional remedies for proteins. The CHARMM36 model 
was utilized for phospholipids, particles, water and cholesterol atoms. Energy minimization and MD reenactments were 
directed utilizing the NAMD2.9 package. All simulations employed periodic boundary conditions, long-ranged 
electrostatics were handled with smooth particle mesh Ewald method, and a cutoff of 1.2 nm was used for Lennard-
Jones potentials with a switching function starting at 1.0 nm. All simulations were run in the NPT ensemble with weak 
coupling to Langevin thermostat and a barostat at a respective 300 K/315 K and 1 atm. All bonds to the hydrogen atoms 
were constrained using the SHAKE/RATTLE algorithm. A multiple time-step rRESPA method was used, and controlled 
with a high frequency time-step of 2fs and low frequency time-step of 4fs. All the systems were energy minimized for 
10000 steps, then simulated for 5 ns with restraints of 1 kcal/mol/Å applied to the C𝛼 atoms of the protein. Restraints 
were then removed and 195 ns of nearly unrestrained simulation was carried out in every one of the four frameworks. 
During this time of the reproduction, just symphonious limitations (force steady 0.4 kcal/mol/Å) between the 
intracellular finishes of the M3 and M4 helices were utilized, to copy the impacts of the intracellular space and keep 
partition of the M4 helix from the remainder of the group. High temperature (315K) reproductions were run for 500 ns 
following the 200 ns recreations at lower temperature (300K). 

Conformational Analysis: The estimation of pore radii was completed using the Opening software and TCL scripting via 
VMD. Python scripts were employed to analyze and visualize the hydration of the pore throughout the simulation. 

Poisson-Boltzmann Calculations: The conduction profile for Na+ and Cl- ions through the channel was computed using 
the Poisson-Boltzmann (PB) method, leveraging APBSmem . Pre-generated PQR protein structures were used as input 
for the electrostatic potential calculations, prepared via the PDB2PQR tool. 

SMD Simulations: Steered Molecular Dynamics (SMD) simulations were employed to determine the positions of ions at 
various points along the channel, providing data for subsequent Adaptive Biasing Force (ABF) calculations. In these 
simulations, the chloride ion was dragged through the channel at a constant velocity of 10 Å/ns. The force required to 
maintain this steady pulling speed was calculated, which could, in theory, be used to derive the potential of mean force 
(PMF) using Jarzynski’s equality. However, practically speaking, achieving sufficiently slow pulling speeds is 
challenging. 

ABF Simulations: Adaptive Biasing Force (ABF) calculations were used to derive the PMF, or free energy profile, for the 
movement of a chloride ion through the GABAAR ion channel at 315K, for both the wild-type () and mutant () channels. 
The Collective Variables module in NAMD2.9 facilitated the ABF computations. The pore length was divided into 23 
segments, each 5 Å in length. Initial ion positions were sourced from the SMD simulations. Each segment collected 1,000 
samples before ABF was applied, ensuring equilibrium effects were minimized. Most segments generated 15 ns of data, 
though regions near the primary pore barrier required 25 ns of simulation. 

3. Theory 

The ring of five basic residues can be approximated as five positive charges arranged in a pentamer, each a distance 𝑟 
from the center, which we refer to as the +5 ring. The thermally excited ring may “breathe”, causing 𝑟 to fluctuate, but 
for simplicity all charges are treated as equidistant from the center. The variation in 𝑟 is given by the time-average 

𝛿𝑟2 = ⟨(𝑟(𝑡) − 𝑟‾)2⟩. 

At equilibrium, the wild-type receptor exhibits normal fluctuations of 𝑟 around its time average 𝑟‾. The free energy of 
the wild-type receptor as a function of the +5-ring radius 𝑟 can be expanded harmonically as 

𝐻𝐾(𝑟) =
𝑘𝑟(𝑟 − 𝑟‾𝐾)

2

2𝑟‾𝐾
, 

where the time-average of 𝑟 is noted by 𝑟‾𝐾, and 𝑘𝑟 is the temperature-dependent coefficient governing fluctuations: 

𝑘𝑟 =
𝑅𝑇 𝑟‾𝐾

⟨(𝑟 − 𝑟‾𝐾)
2⟩
, 

where 𝑅 is the gas constant and 𝑇 is the temperature. 
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The mutation 𝛾K289M removes the four long-range repulsive electrostatic interactions involving 𝛾𝐾289. Shrinking the 
pentameric ring is therefore less unfavorable in the presence of the mutation, and the free energy as a function of 𝑟 is 
reduced by the Coulomb energy of the lost interactions: 

𝛥𝑈(𝑟) =
−𝑘𝑒𝑒

2

𝑟
(

1

sin2𝜋/5
+

1

sin𝜋/5
) = −

𝑐𝑘𝑒𝑒
2

𝑟
 

where 𝑐 ∼ 2.75, 𝑒 is the electron charge, and $k_{e} = 332 \mathrm{\AA/kcal/mol}/e^{2}$ is the Coulomb constant. 
Note that this simplification is reasonable primarily because all five charges are nearly coplanar in a plane perpendicular 
to the pore axis. Other electrostatic interactions will also be lost, but it is reasonable to neglect them because they 
involve residues screened by another oppositely charged residue and/or they do not have a significant radial 
component. The total free energy for the mutant receptor is therefore 

𝐻𝑀(𝑟) = 𝐻𝐾(𝑟) + 𝛥𝑈(𝑟)

=
𝑘𝑟(𝑟 − 𝑟‾𝐾)

2

2𝑟‾𝐾
−
𝑐𝑘𝑒𝑒

2

𝑟

= 𝑘𝑟𝑟‾𝐾 (
(𝑟 − 𝑟‾𝐾)

2

2𝑟‾𝐾
2 −

𝜅𝑟‾𝐾
𝑟
) ,

 

Where;  

𝜅 ≡
𝑐 𝑘𝑒𝑒

2

𝑘𝑟𝑟‾𝐾
2 =

𝑐

𝑅𝑇

𝑘𝑒𝑒
2

𝑟‾𝐾

𝛿𝑟2

𝑟‾𝐾
2  

The average radius for the mutant receptor, 𝑟‾𝑀, minimizes 𝐻𝑀: 

∂𝐻𝑀(𝑟)

∂𝑟
|
𝑟‾𝑀

= 𝑘𝑟 (1 −
𝑟‾𝑀
𝑟‾𝐾

− 𝜅 (
𝑟‾𝐾
𝑟‾𝑀
)
2

) = 0. 

Defining the ratio between the two mean radii 𝛼 ≡ 𝑟‾𝑀/𝑟‾𝐾, Equation [eq:minimize] reduces to 1 − 𝛼 − 𝜅/𝛼2 = 0.  This 

equation has an exact, real solution for 𝜅 < 4/27 (
𝑘𝑒𝑒

2

𝑘𝑟𝑟𝐾
2 < 0.035), which when expanded around 𝜅 = 0 is 

𝛼 =
𝑟‾𝑀
𝑟‾𝐾

= 1 − 𝜅 − 2𝜅2 − 7𝜅3 + 𝑂(𝜅4). 

To first order in 𝜅, we predict that 

𝑟‾𝑀 = 𝑟‾𝐾 −
𝑐𝑘𝑒𝑒

2

𝑅𝑇

𝛿𝑟𝐾
2

𝑟‾𝐾
2  

where 𝑐𝑘𝑒𝑒
2/𝑅 = 8.3 × 105 Å K. 

4. Results and discussion 

4.1. Conformational Effects of Mutation 

4.1.1. +5 ring 

For comparison with the analytical model of the +5 ring presented in Theory, the mean 𝑟‾𝐾 and standard deviation √𝛿𝑟𝐾
2 

of the distance of +5 ring charges from the pore axis (see Figure [fig:diagram]) were measured for the systems at each 

temperature. Results are in Table [tab:prediction], showing that 𝑟‾𝐾  was not sensitive to temperature, while √𝛿𝑟𝐾
2 

increased with temperature, as expected. These values, as well as Equations [eq:kr] and [eq:kappadef], were used to 
calculate the parameters 𝑘𝑅 and 𝜅 for each temperature. 
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Eq. [eq:predict] was used to generate predictions for 𝑟‾𝑀, which were reduced relative to 𝑟‾𝐾 at both temperatures, but 
with a much larger reduction at higher temperatures. Quantitative agreement was very good, especially given the 
simplicity of the theory; at 300K we predicted a 3.1% reduction upon mutation, but obtained a reduction of 2.5%, while 
at 315K we predicted an 8.2% reduction but obtained a 6.3% reduction. In both cases, the reduction was overestimated, 
which may reflect computational limits on equilibration time for the receptor or a higher order contribution to 𝐻𝐾(𝑟) 
resulting in a steeper free energy cost when 𝑟 − 𝑟‾𝐾 is large. 

Observed values and extracted parameters from analysis of +5 ring in receptors, and predicted and observed values 
upon mutating K289M (yielding +4 ring). 

𝑻(𝑲) 𝒓‾𝑲(Å) 𝒓‾𝑴(pred,Å) 𝒓‾𝑴(obs, Å) 
√𝜹𝒓𝑲

𝟐  (Å) 
𝜿 𝒌𝑹/𝒓‾𝑲 (kcal/mol/Å𝟐) 

300 15.9 15.4 15.5 0.27 0.027 8.5 

315 15.8 14.5 14.8 0.42 0.066 3.6 

4.1.2. Pore radius 

Although the simple electrostatic effects of neutralizing one charge in the +5 ring predict the observed closing of that 
ring, a functional effect requires that the radius of the +5 ring is coupled to the radius of the pore. The pore radius profile 
(averaged across two replicas) for the and receptors is shown in Figure 1. The minimum constriction region (flanked 
by hydrophobic leucine residues) occurs at roughly the same height along the pore axis for the two systems but is 
substantially tighter for the averaged mutant structure, particularly at higher temperatures. 

As shown in Figure 2, overlap between and trajectories (including individual replicas) is substantial at 300K, although 
the distribution of minimum pore radii is shifted slightly downward (smaller) for the mutant receptor. At 315K, this 
overlap is substantially reduced, with both replicas yielding conformations with persistently larger pore radii than both 
replicas. These trends mimic those observed in the +5 ring. 

Determining whether a single conformation corresponds to an “open” or “closed” state is not typically possible in MD 
simulations, but we note here that a Cl- atom has a radius of approximately 1.8Å; at 300K, the minimum pore radius is 
greater than 1.8Å for 69% () and 43% () of the frames, while at 315K, the minimum pore radius is greater than 1.8Å for 
69% () and 26% () of the frames. 

All simulations here were done in the absence of GABA or other agonist, which is not stable in the agonist-binding site 
due to limitations of classical non-polarizable forcefields for capturing cation-𝜋 interactions. The presence of agonist 
would likely alter 𝑟‾𝐾 and/or 𝑘𝑅, but would not affect 𝛥𝑈(𝑟), which depends only on the protein sequence. 

(A) Space-filling models computed from simulations at 315 K, depicting the reduced pore radii of the (red) as compared 
to that of the (blue). (B) Radii of the transmembrane domain along the Z-axis averaged over all the frames. The pore 
profile around the 9’ region is more constricted at the higher temperature when compared to that of the lower 
temperature in both the and the. The space-filling models further compare the significant reduction in the pore radius 
in the to the fairly open, and the movement of helices compared to their respective initial conformations(gray). 
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Figure 2 (A) Space-filling models computed from simulations at 315 K, depicting the reduced pore radii of the (red) as 
compared to that of the (blue). (B) Radii of the transmembrane domain along the Z-axis averaged over all the frames. 

The pore profile around the 9’ region is more constricted at the higher temperature when compared to that of the 
lower temperature in both the and the . The space-filling models further compare the significant reduction in the pore 
radius in the to the fairly open , and the movement of helices compared to their respective initial conformations(gray) 

Smoothed time evolution of the pore minimum constriction, averaged (solid lines) over two replicas (dotted lines) each, 
at 300 K(A) and 315 K(B). The minimum constriction, formed around the 9’ region, is visibly more constricted for the , 
and this reduction is more pronounced at higher temperatures. The minimum constriction region in falls below the 
chloride ion radius of 1.8Å, thus driving it to a closed state. The probability distribution further shows a clear shift in 
the peak of the towards reduced pore radii at a higher temperature. 
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Figure 3 Smoothed time evolution of the pore minimum constriction, averaged (solid lines) over two replicas (dotted 
lines) each, at 300 K(A) and 315 K(B). The minimum constriction, formed around the 9’ region, is visibly more 

constricted for the , and this reduction is more pronounced at higher temperatures. The minimum constriction region 
in falls below the chloride ion radius of 1.8Å, thus driving it to a closed state. The probability distribution further 

shows a clear shift in the peak of the towards reduced pore radii at a higher temperature 

4.2. Drying of the pore 

To further understand the direct implication of the closing of the channel, we measured the average number of water 
molecules in the pore channel. Many theoretical studies on water have shown that interfacial drying can be caused by 
hydrophobic enclosures in the protein. Furthermore, studies have also shown that drying of the pore region could lead 
to blocking of the channel since water is assumed to facilitate the conduction of ions. As mentioned earlier, the pore-
facing residues in GABAAR are dominated by non-polar residues, and this causes intermittent drying of the channel 
when the minimum constriction region comes closer to form hydrophobic enclosures. The plot (Figure 3A) shows the 
density of the water molecules throughout the simulation along the Z-axis. Figure 3B further substantiates the plot by 
depicting the absence of water in the minimum constriction region of the pore at higher temperatures in the. Thus, such 
dehydration of the channel could be a mechanism for inhibiting the conduction of the channel. 

(A)Number of water particles along the Z-hub found the middle value of over the casings and copies. Presence of water 
in the narrowing district of the - M2 helices (B) when contrasted with the transitory dryness because of a decrease in 
pore radii in the - M2 helices(C) at higher temperatures. On a normal, almost zero no. of water particles are found at the 
9’ district in the framework, portraying the depriving of water particles because of the nook of the hydrophobic residues. 
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Figure 4 (A) Number of water particles along the Z-hub found the middle value of over the casings and copies. 
Presence of water in the narrowing district of the - M2 helices (B) when contrasted with the transitory dryness 

because of a decrease in pore radii in the - M2 helices(C) at higher temperatures. On a normal, almost zero no. of water 
particles are found at the 9’ district in the framework, portraying the depriving of water particles because of the nook 

of the hydrophobic residues 

5. Effects of Mutation on Conduction 

5.1. Electrostatic Barriers in the Channel 

The impacts of the change on simply electrostatic hindrances for chloride particle movement was evaluated through 
the Poisson-Boltzmann condition as depicted in Techniques. The transformation from a decidedly charged to unbiased 
buildup prompted minute changes in the electrostatic profile given indistinguishable beginning designs (as displayed 
in Valuable Figure S2(A) and Figure S2(B)), recommending that the transformation alone couldn’t influence 
conductance with practically no conformational changes. 

The calculation performed on equilibrated structures of and receptors showed a 5-10 kcal/mol (Figure S2(C)) higher 
electrostatic barrier in, predominantly occurring in the transmembrane domain enclosing the residues containing the 
minimum pore constriction region. The LEU-gate constriction, in addition to the loss of long-range electrostatic 
interactions from K289, seems to contribute to the formation of a higher barrier in the. We note that these calculations 
include electrostatic contributions, but not van der Waals or entropic contributions; these terms are included in the 
measurement of the potential of mean force via Adaptive Biasing Force calculations as described subsequently. 

Potential of mean force profile of chloride ion transport (A) Aligned below the horizontally laid protein figure is the plot 
showing the potential mean force experienced by the ion as it moves through the channel along the Z-axis. (B) These 
barriers in the channel are further compared with the average pore radius of the channel’s TM region. These 
comparisons clearly explain that the highest barriers are found in the 9’ regions, which form the minimum constriction 
region. The difference between the barriers at this region is approximately 5 Kcal/mol. 
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Figure 5 Potential of mean force profile of chloride ion transport (A) Aligned below the horizontally laid protein 
figure is the plot showing the potential mean force experienced by the ion as it moves through the channel along the Z-
axis. (B) These barriers in the channel are further compared with the average pore radius of the channel’s TM region. 

These comparisons clearly explain that the highest barriers are found in the 9’ regions, which form the minimum 
constriction region. The difference between the barriers at this region is approximately 5 Kcal/mol 

5.2. Potential of Mean Force 

The PMF for chloride particle movement at 315K, estimated utilizing ABF, is displayed in Figure 4. The biggest 
obstruction happens more proximal to the leucine deposits shaping the most secure narrowing; this hindrance is 
expanded by 5 kcal/mol for the freak receptors. A slight, broad well (relative to a reference position outside the 
receptor) is apparent around residue 289 in the PMF for the receptor, while at the same location in the receptor, the 
PMF is slightly elevated relative to the reference location. However, these differences are slight compared to the effects 
of the mutation on the primary barrier, indicating that while a change of a decidedly charged to unbiased buildup small 
affects the partiality of the chloride particle for the locale of the receptor close to the transformation, the prevailing 
impact of the change on conduction is by means of conformational unsteadiness of the open state.   

6. Conclusion 

In this work, we investigated the effects of a fever-associated charged-to-hydrophobic mutation in a human ligand-gated 
ion channel, allowing us to identify the significance of collective, long-range, electrostatic interactions for maintaining 
the protein’s function at higher temperatures. The temperature-dependent structural effect of reducing these 
electrostatic interactions via substitution of K to M at 𝛾2: M2 24′ can be well-predicted simply by considering Coulombic 
repulsions between charged residues at M2 24′ in all subunits, as well as a simple variational theory which introduces 
temperature effects. The phenomenon of unstable activation in 𝛾2 K289M GABAAR, previously observed in vivo and in 
vitro, has now been observed in silico and in principio. 

A basic residue at 24′ in the M2-M3 loop is highly conserved across GABAAR subunits but not across all pLGICs. It is not 
necessary, however, that charged residues be positioned at 24 ′  for cross-pore repulsions to stabilize open 
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conformations, but simply that they be in the same position in each subunit. Crucial collective interactions might 
therefore be well indicated by the presence of a charged residue that appears at the same position in all pore-sharing 
species (i.e. all GABAAR subunits or all GlyR subunits), but which is non-conserved across pLGICs in general. 

To maintain the necessary range for cross-pore interactions, it is critical that the charged residues be unscreened. The 
presence of a nearby oppositely charged residue in one subunit will reduce the charge-charge interaction (1/𝑟) to a 
charge-dipole interaction (1/𝑟2), with the presence of an additionally charged residue on the other side yielding a 
dipole-dipole interaction (1/𝑟3). Screening may be affected by changes in pH as well as participation in salt bridges, 
suggesting a mechanism that may be crucial for gating in numerous other pLGICs. 

Based on these results, we suggest that the binding of GABA may activate the channel by reducing the screening of 
residues in the M2 24 ′ ring. In particular, the results of Harrison and co-workers implicate a critical role for interactions 
between 𝛼D57/D14 and 𝛼K279 (M2 24′). While it has often been hypothesized that these residues gate by forming a 
salt-bridge, we speculate here that these residues may gate by breaking their salt-bridge, removing screening of charged 
residues in the +5 ring, increasing cross-pore repulsions, and opening the pore. 
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