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Abstract 

In this study, I explore the impact of different Bayesian inference techniques—Hamiltonian Monte Carlo (HMC) and 
Maximum A Posteriori (MAP)—on personalized dosing strategies within pharmacokinetic modeling for apixaban. I 
present a Bayesian model that incorporates informative priors to derive personalized dosing recommendations based 
on desired trough concentrations following an initial dose. Through extensive simulation, I demonstrate significant 
discrepancies between dosing strategies derived from HMC and MAP, particularly in terms of predicted concentration 
uncertainties. While MAP provides a point estimate that is computationally efficient and familiar, it leads to different 
decision-making outcomes compared to HMC, which accounts for uncertainty more comprehensively. My findings 
reveal that MAP and HMC can lead to markedly different dosing recommendations, highlighting the importance of 
considering inference methods beyond point predictions in Bayesian pharmacokinetic modeling. I recommend 
practitioners use HMC alongside MAP to validate and compare results, thereby enhancing the transparency and 
reproducibility of personalized dosing strategies. 
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1. Introduction

Personalized medicine aims to optimize drug dosing for individuals, necessitating a thorough understanding of 
pharmacokinetic (PK) and pharmacodynamic (PD) effects. Models incorporating clinical, genetic, and lifestyle factors 
are crucial for determining appropriate doses. Such models are often developed using data from clinical trials in 
collaboration with drug manufacturers. However, when independent investigators collect data from specific 
populations, they may encounter variables not previously studied in clinical trials, limiting their ability to draw 
conclusions without running new, large-scale studies. 

The oral anticoagulant apixaban illustrates this challenge. Existing PK models, developed using clinical trial data, 
identify factors such as age, sex, body weight, renal function, race, and CYP3A4 inhibitors as modulators of apixaban PK. 
However, real-world data show higher-than-expected apixaban concentrations and question the appropriateness of 
current dosing criteria. This suggests previously published models may lack external validity for some populations, 
highlighting the need for tailoring PK models to specific populations of interest. 

Using a Bayesian approach, previous models can serve as informative priors, allowing for “fine-tuning” rather than 
building entirely new models. This study demonstrates how Bayesian methods can be used to fit PK models with 
available data, focusing on apixaban but generalizable to other drugs. I incorporate prior information, handle 
heterogeneous data (e.g., sparse and repeated sampling), and explore new variables using sparsity-inducing priors to 
detect meaningful effects even with limited data. My methodology, implemented in an open-source Bayesian 
framework, offers a widely accessible alternative to proprietary tools, thus promoting broader research efforts. 
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2. Background 

2.1. Apixaban 

Apixaban is a direct oral anticoagulant (DOAC) used for stroke and systemic embolism prevention in patients with atrial 
fibrillation (AF). Recent studies report significant variability in plasma concentrations of apixaban, raising concerns 
about increased bleeding risk . This variability suggests the need for a deeper understanding of factors influencing 
apixaban pharmacokinetics in older adults with AF outside clinical trials. 

2.2. Variable Selection 

Pharmacokinetic studies often use variable selection methods (e.g., stepwise selection) to identify relevant variables. 

However, such techniques can result in biased estimates, exaggerated precision, and unstable p -values due to failure in 
accounting for model selection uncertainty. Bayesian alternatives, such as spike-and-slab priors  or the horseshoe prior 
, shrink effect estimates towards zero, improving model reliability when true effects are small or negligible. 

In this study, I present a simulation using sparsity-inducing priors to estimate the effect of a concomitant medication on 
apixaban pharmacokinetics. Using a Laplace prior on the medication effect and a prior on the Laplace scale, similar to 
the LASSO penalty , I demonstrate this approach on simulated data with varying sample sizes. 

2.3. Need for Hierarchical Models 

Pooling sparsely and repeatedly sampled data can improve parameter estimation accuracy. Traditional linear 
regression models, though simple, fail to accurately model covariate effects on pharmacokinetics when data are sparsely 

sampled. For example, linear models approximate the concentration profile C (t )  as exponential in the elimination 
phase, but do not handle covariate interactions appropriately. 

Mixed-effects models are commonly used in meta-analysis to pool data across studies with similar protocols. However, 
when data are collected under differing protocols, exchangeability assumptions may not hold. In such cases, hierarchical 
models offer an advantage by allowing for different residual variances between studies, thereby accommodating the 
differing precision levels in sparsely versus repeatedly sampled data. 

3. Bayesian Model 

My Bayesian hierarchical model captures the population-level effect of covariates such as age, sex, weight (in kg), and 

serum creatinine (in μmol ) on pharmacokinetic parameters like clearance, time to maximum concentration, and the 

ratio between absorption and elimination rates, which I denote as the unitless parameter α . These population-level 
effects are shared across all datasets, allowing information from one dataset to inform the model fit of another. 
Additionally, I include a population-level effect of concomitant amiodarone usage on the bioavailability of apixaban. The 
model is implemented using the probabilistic programming language Stan . 

Let s= 1,…, K  denote the number of studies being pooled together. Each study has j = 1,…, Ns  subjects, observed 

at times t i  for i= 1,…,T j . In the case of sparsely sampled data, T j= 1 , meaning I have only one sample per subject. 

For repeatedly sampled data, T j >1, meaning I have multiple measurements from the same subject. my model considers 
K= 2 studies, with N1= 36  subjects in the repeatedly sampled data and N2= 402  subjects in the sparsely sampled 

data. Each repeatedly sampled subject is sampled T= 8  times. 

3.1. Modeling Pharmacokinetic Parameters 

I assume population-level effects of each covariate on the pharmacokinetic parameters, and that the distribution of 

these parameters given covariates x j , s  for subject j  in study s  are the same between studies. Let θ j ,s  represent a vector 

of pharmacokinetic parameters for subject j  in study s . In my model, θ j ,s  is defined as: 

θ j ,s= (Cl j ,s,tmax, j ,s,α j , s, F j , s)  

where: 
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• Cl j ,s: Clearance rate for subject j  in study s . 

• tmax, j , s: Time to maximum concentration for subject j  in study s . 

• α j , s: Ratio between absorption and elimination rates. 

• F j , s : Bioavailability for subject j  in study s . 

I also estimate two non-pharmacokinetic parameters from my data. Let δ j , s  denote the time delay between ingestion of 

the bolus dose and absorption into the bloodstream, and c0, j , s the initial concentration of apixaban in the bloodstream 

at the time of ingestion. Note that δ  cannot be estimated from the sparsely sampled data (as only a single measurement 
was taken), so I set: 

δ j ,2= 0∀ j .  

Additionally, sparsely sampled patients are assumed to be in a steady-state and thus have a non-zero initial 
concentration of apixaban at the time of ingestion, unlike the repeatedly sampled patients who had not taken apixaban 
prior to the study: 

c0, j ,1= 0∀ j . 

For sparsely sampled patients, c0, j ,2 can be estimated from other pharmacokinetic parameters, assuming subjects have 
been taking apixaban twice daily with perfect adherence for the last 5 days. This can be computed by solving the 
associated differential equations using the Laplace Transform. 

3.2. Regression Model for Pharmacokinetic Parameters 

Each pharmacokinetic parameter has a corresponding set of regression coefficients and an intercept term. Each 

parameter is regressed on subject covariates x j , s  as follows: 

log(C l j , s) ¿μCl +x j ,s
Cl
βCl ,

log(tmax, j , s) ¿μt+x j ,s

t
βt ,

logit (α j , s) ¿μα+x j ,s

α
βα ,

logit (F j , s) ¿μF+x j ,s

F
βF .

 

Here, μ  represents the intercept terms, while β  are the regression coefficients for the covariates. The superscripts on x  
indicate that different covariates may be used for each regression. I include random effects for repeatedly sampled 
subjects. 

Each θ j ,s  is used to predict the concentration profile C (t ) using a one-compartment pharmacokinetic model with first-
order elimination: 

C j , s(ti )= {c0, j , s+
D j , sF j , ske, j , ska, j , s

Cl j , s(ke, j ,s− ka, j ,s)
(e− ka, j ,s( ti −δ j ,s)

− e
− ke, j ,s( ti −δ j ,s)) δ j ,s≤t i

0 else
)

 

Again, if s= 1  (repeatedly sampled study), then: 

c0, j ,1= 0∀ j ,
 

and if s= 2  (sparsely sampled study), then: 

δ j ,2= 0∀ j .
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The predicted latent concentrations are then used to compute the likelihood. I assume a lognormal likelihood for both 
datasets, with variance differing by study: 

yi , j , s∼ Lognormal (log (C j , s(ti )) ,σs).  

3.3. Model Visualization 

The structure of my hierarchical model is visualized as a Bayes network in Figure [fig:bayes_net]. Here, β  and μ  are the 
regression coefficients and intercepts for the effects of covariates on pharmacokinetic parameters. These effects are 
assumed to be shared across all studies, meaning that the effect of age on time to maximum concentration, for example, 

is the same for all studies. Different residual variances σs

2

 for each study prevent subjects from being considered fully 
exchangeable between studies. 

4. Results 

4.1. Simulation Study 

The outcomes of my simulation study are presented in Figure 1. The figure illustrates how the precision of estimating 
the effect of concomitant drug use improves as the number of both repeatedly sampled and sparsely sampled patients 
increases. Specifically, the black dots represent the individual estimates from each of the 10 simulation runs, while the 
red dots depict the mean estimate across these runs for each sample size. 

Results from the simulation study evaluating the estimation of the effect of a novel predictor. Each black dot represents 
an individual estimate from one of the 10 simulation runs, and the red dot indicates the average estimate across all runs 
for a given sample size. The data are stratified by the number of repeatedly sampled patients. Smaller datasets exhibit 
more bias towards the null effect, which diminishes as the sample size increases, demonstrating enhanced precision 
with larger datasets. 

 

Figure 1 Results from the simulation study evaluating the estimation of the effect of a novel predictor. Each black dot 
represents an individual estimate from one of the 10 simulation runs, and the red dot indicates the average estimate 
across all runs for a given sample size. The data are stratified by the number of repeatedly sampled patients. Smaller 

datasets exhibit more bias towards the null effect, which diminishes as the sample size increases, demonstrating 
enhanced precision with larger datasets 
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As depicted in Figure 1, smaller sample sizes tend to show a greater bias towards the null effect. This bias is attributed 
to the sparsity-inducing priors, which concentrate most of their probability mass near zero, thereby regularizing effect 
estimates towards null values. While this introduces a slight bias, it is generally acceptable in exploratory and predictive 
contexts where reducing model variability is advantageous for identifying significant effects. 

4.2. Descriptive Statistics 

Table 1 provides descriptive statistics for repeatedly sampled and sparsely sampled datasets 

 

 Repeatedly Sampled Data Sparsely Sampled Data Overall 

 (N=36) (N=401) (N=437) 

Age (years) 

Mean (SD) 49.8 (11.5) 78.8 (9.43) 76.4 (12.5) 

Median [Min, Max] 50.0 [26.0, 70.0] 79.0 [47.0, 98.0] 79.0 [26.0, 98.0] 

    

Mean (SD) 88.0 (24.4) 85.6 (23.8) 85.8 (23.8) 

Median [Min, Max] 83.5 [54.7, 137] 81.6 [40.0, 221] 81.8 [40.0, 221] 

    

Mean (SD) 68.0 (12.5) 105 (44.5) 102 (43.9) 

Median [Min, Max] 65.0 [50.0, 95.0] 92.0 [42.0, 316] 89.0 [42.0, 316] 

    

Female 23 (63.9%) 178 (44.4%) 201 (46.0%) 

Male 13 (36.1%) 223 (55.6%) 236 (54.0%) 

    

Mean (SD) 0 (0) 16.2 (60.1) 14.9 (57.7) 

Median [Min, Max] 0 [0, 0] 0 [0, 400] 0 [0, 400] 
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As well as the combined overall dataset. Notably, the repeatedly sampled study excludes patients taking CYP3A4 
inhibitors, resulting in all subjects within this group having a concomitant amiodarone dosage of zero 

The descriptive statistics reveal significant differences between the two datasets. The repeatedly sampled group is 
considerably younger (mean age 49.8 years) compared to the sparsely sampled group (mean age 78.8 years). 
Additionally, creatinine levels are notably higher in the sparsely sampled group, which may influence the 
pharmacokinetics of apixaban, particularly clearance rates. 

4.3. Model Prediction Performance 

My Bayesian model demonstrated robust predictive capabilities for both repeatedly sampled and sparsely sampled 
datasets. Figure 2 presents a log-log plot comparing predicted versus observed apixaban concentrations for both 
datasets. Each subplot within the figure uses a separate scale to emphasize the differences in prediction accuracy 
between the two groups. 

Predicted versus observed apixaban concentrations on the log scale for both repeatedly sampled and sparsely sampled 
datasets. Each subplot has an individual scale to highlight prediction accuracy differences. The model exhibits higher 
prediction accuracy for repeatedly sampled patients due to the ability to estimate random effects for each subject’s 
pharmacokinetic parameters. In contrast, the sparsely sampled data show increased prediction error, partly because 
patient-specific random effects are not estimated, resulting in unaccounted measurement error. 

 

Figure 2 Predicted versus observed apixaban concentrations on the log scale for both repeatedly sampled and 
sparsely sampled datasets. Each subplot has an individual scale to highlight prediction accuracy differences. The 
model exhibits higher prediction accuracy for repeatedly sampled patients due to the ability to estimate random 

effects for each subject’s pharmacokinetic parameters. In contrast, the sparsely sampled data show increased 
prediction error, partly because patient-specific random effects are not estimated, resulting in unaccounted 

measurement error 
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The model’s superior performance in predicting concentrations for repeatedly sampled patients can be attributed to 
the incorporation of random effects, which capture subject-specific variability in pharmacokinetic parameters. 
Conversely, the sparsely sampled data lack this individual-level random effect estimation, leading to higher prediction 
errors as within- and between-patient variability is treated solely as measurement error. 

4.4. Pharmacokinetic Parameter Estimates 

Leveraging my Bayesian model, I can derive estimates of key pharmacokinetic parameters and their dependencies on 

covariates. Figure 3 illustrates the estimated maximum concentration (Cmax) of apixaban for a reference patient across 
varying doses of concomitant amiodarone. The model indicates that amiodarone, a CYP3A4 inhibitor, significantly 

increases the bioavailability of apixaban, thereby elevating Cmax . The figure includes the posterior mean estimates 
(black line) along with 95% equal-tailed posterior credible intervals (shaded region), demonstrating the uncertainty 
propagated through the Bayesian framework. 

Estimated maximum apixaban concentration (Cmax) as a function of concomitant amiodarone dosage for a reference 
patient. The black line represents the posterior mean estimate, while the shaded area denotes the 95% equal-tailed 
posterior credible interval. The model suggests that increased doses of amiodarone lead to higher bioavailability of 

apixaban, resulting in elevated Cmax. The credible intervals reflect the uncertainty in these estimates, underscoring the 
importance of accounting for this variability in clinical decision-making. 

 

Figure 3 Estimated maximum apixaban concentration (Cmax) as a function of concomitant amiodarone dosage for a 
reference patient. The black line represents the posterior mean estimate, while the shaded area denotes the 95% 

equal-tailed posterior credible interval. The model suggests that increased doses of amiodarone lead to higher 

bioavailability of apixaban, resulting in elevated Cmax. The credible intervals reflect the uncertainty in these estimates, 
underscoring the importance of accounting for this variability in clinical decision-making 

4.5. Covariate Effect Estimates 

Figure 4 compares the marginal posterior densities of covariate effects on pharmacokinetic parameters across three 
models: one fitted to the repeatedly sampled data alone, one fitted to the sparsely sampled data alone, and the pooled 
model that integrates both datasets. This comparison highlights the benefits of pooling data, as the combined model 
generally exhibits higher precision in effect estimates due to the increased sample size. Additionally, the pooled model 
maintains consistency in the direction and magnitude of covariate effects compared to the separate models, indicating 
robust and reliable estimates. 

Marginal posterior densities for covariate effects on pharmacokinetic parameters from three models: (1) fitted to 
repeatedly sampled data only, (2) fitted to sparsely sampled data only, and (3) the pooled model integrating both 
datasets. The pooled model typically demonstrates narrower credible intervals, reflecting increased precision from the 
larger combined sample size. The consistency in effect directions and magnitudes across models suggests that pooling 
does not introduce significant biases and enhances the reliability of covariate effect estimates. 
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Figure 4 Marginal posterior densities for covariate effects on pharmacokinetic parameters from three models: (1) 
fitted to repeatedly sampled data only, (2) fitted to sparsely sampled data only, and (3) the pooled model integrating 
both datasets. The pooled model typically demonstrates narrower credible intervals, reflecting increased precision 
from the larger combined sample size. The consistency in effect directions and magnitudes across models suggests 

that pooling does not introduce significant biases and enhances the reliability of covariate effect estimates 

The pooled model effectively synthesizes information from both datasets, leading to more precise and stable estimates 
of covariate effects. For instance, the effect of age on clearance rate and the impact of weight on bioavailability are 
estimated with greater confidence in the pooled model compared to models using individual datasets. This 
enhancement is particularly valuable in scenarios where one dataset may have limited information or higher variability, 
as the pooled approach leverages complementary strengths from both data sources. 

4.6. Interpretation of Key Findings 

My analysis reveals several important insights into the pharmacokinetics of apixaban: 

• Effect of Concomitant Amiodarone: The Bayesian model indicates that amiodarone significantly increases the 

bioavailability of apixarban, which in turn elevates the maximum concentration (Cmax). This finding is clinically 

relevant as higher Cmax  may be associated with increased bleeding risks, necessitating careful dose 
management when amiodarone is co-administered. 

• Precision of Covariate Effects: Pooling repeatedly sampled and sparsely sampled data enhances the precision 
of covariate effect estimates. This is evident from the narrower credible intervals in the pooled model, which 
facilitates more confident clinical decision-making based on these parameters. 

• Model Predictive Performance: The ability of the model to accurately predict apixaban concentrations in 
repeatedly sampled patients underscores the value of incorporating random effects. However, the reduced 
accuracy in sparsely sampled data highlights the challenges in predicting pharmacokinetics without sufficient 
individual-level data. 

• Handling of Sparse Data: The hierarchical Bayesian framework effectively integrates sparse and rich datasets, 
mitigating some of the limitations associated with each data type alone. This approach enables more 
comprehensive modeling of pharmacokinetic parameters across diverse patient populations. 

These findings demonstrate the utility of Bayesian hierarchical models in pharmacokinetic studies, particularly in 
leveraging diverse data sources to enhance model accuracy and reliability. 
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4.7. Limitations and Future Work 

While my Bayesian model provides significant advantages in modeling apixaban pharmacokinetics, several limitations 
must be acknowledged: 

• Assumption of Steady State: For sparsely sampled patients, I assume a steady-state concentration based on 
perfect adherence over the past five days. In real-world scenarios, adherence may vary, potentially affecting 
the accuracy of initial concentration estimates. 

• Fixed Number of Studies: My model currently pools data from two studies with distinct sampling protocols. 
Extending the model to accommodate more studies with varying protocols may require additional hierarchical 
layers or adjustments to the residual variance structure. 

• Limited Covariate Exploration: While I included key covariates such as age, sex, weight, and creatinine, other 
potential factors (e.g., genetic polymorphisms, dietary factors) influencing apixaban pharmacokinetics were 
not considered and warrant further investigation. 

• Computational Complexity: Bayesian hierarchical models, especially those implemented in Stan, can be 
computationally intensive, particularly with large datasets or complex model structures. Optimization 
techniques and computational resources may need to be scaled accordingly. 

Future work will focus on addressing these limitations by incorporating additional covariates, expanding the number 
of pooled studies, and exploring computational optimizations to enhance model scalability and applicability. 

4.8. Practical Implications 

The enhanced precision and reliability of covariate effect estimates from my pooled Bayesian model have direct 
implications for personalized medicine: 

• Dose Optimization: Clinicians can utilize the model’s estimates to tailor apixaban doses based on individual 
patient characteristics and concomitant medications, potentially reducing the risk of adverse events such as 
bleeding. 

• Clinical Decision Support: Integrating the Bayesian model into clinical decision support systems can provide 
real-time recommendations for apixaban dosing, enhancing patient safety and treatment efficacy. 

• Policy and Guidelines: The findings can inform updates to clinical guidelines regarding apixaban dosing, 
particularly in populations with high variability in pharmacokinetic parameters. 

• Further Research: The modeling framework can be extended to other medications with complex 
pharmacokinetics, promoting broader applications in personalized medicine. 

By facilitating more accurate and individualized dosing strategies, my Bayesian hierarchical model contributes to the 
overarching goals of personalized medicine, improving patient outcomes through evidence-based pharmacokinetic 
insights. 

5. Discussion 

5.1. Pooling Information across Diverse Studies 

The Bayesian hierarchical model I present effectively pools information across studies with differing protocols. This 
integration allows investigators to leverage all available data—whether derived from controlled clinical studies or from 
patient interactions in personalized medicine clinics—to fine-tune pharmacokinetic models tailored to specific 
populations of interest. By sharing population-level effects of covariates such as age, sex, weight, and serum creatinine 
across studies, my model enables partial pooling of information, enhancing the robustness and generalizability of the 
pharmacokinetic estimates. 

5.2. Model Extensions: Accounting for Heterogeneity 

While my current model assumes that the effect of each covariate is consistent across different studies—for instance, 
the impact of weight on clearance rate is identical in both studies—this assumption may not always hold true. In reality, 
the effect of a covariate could vary between populations due to unmeasured factors or differing study conditions. 
Allowing for heterogeneity of effects between studies could potentially explain additional variability that is not 
accounted for by the measured covariates. 
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Extending my model to incorporate heterogeneity involves introducing additional hierarchical layers where each 

regression coefficient (β ) and intercept (μ) is generated from a higher-level distribution with its own parameters. This 
approach would enable the model to estimate study-specific deviations from the overall population effects, thereby 
capturing between-study variability. However, given that my current analysis includes only two studies, reliably 
estimating the between-study variability parameters is challenging. With more studies, this extension would become 
more feasible and could enhance the model’s flexibility and accuracy. 

5.3. Simulation Study: Discovering Novel Predictors 

To demonstrate the model’s capability in identifying novel predictors of pharmacokinetics, I conducted a simulation 
study where a sparsity-inducing double exponential (Laplace) prior was placed on the effect of a potential new covariate 
on the bioavailability of apixaban. This prior functions similarly to the LASSO penalty, encouraging effect estimates to 
shrink towards zero unless there is sufficient evidence in the data to support a substantial effect. 

The simulation results indicated that my model reliably estimates the effect of the novel covariate, even with limited 
data from repeatedly sampled patients. Although the sparsity-inducing prior introduces a small bias towards the null, 
this bias diminishes as the sample size increases. The trade-off between bias and variance is beneficial for exploratory 
analyses where reducing model variability can enhance the detection of meaningful effects. This behavior is analogous 
to the James-Stein estimator, where bias is introduced to achieve lower overall mean squared error. 

5.4. Case Study: Apixaban Pharmacokinetics 

In my case study, I applied the Bayesian hierarchical model to pool data from two distinct sources: a controlled clinical 
study and an observational dataset. Utilizing a sparsity-inducing prior, I regularized the estimates of the effect of 
concomitant amiodarone on the bioavailability of apixaban. Consistent with previous studies , my model found that 
amiodarone, a CYP3A4 inhibitor, significantly increases apixaban concentrations. Unlike previous descriptive models, 
my mechanistic model explicitly incorporates pharmacokinetic parameters and integrates prior information from 
multiple studies, allowing for more nuanced and comprehensive inferences. 

One notable advantage of my Bayesian approach is the ability to propagate uncertainty through the pharmacokinetic 
parameters. For example, my model estimates the time to maximum concentration for each patient and incorporates 

this uncertainty into the prediction of maximum concentration (Cmax). This results in posterior credible intervals for 
Cmax that more accurately reflect the inherent variability and uncertainty, enhancing the reliability of clinical decision-
making based on these estimates. 

5.5. Partially Pooled Models and Regularization 

The marginal posterior distributions of covariate effects exhibit characteristics typical of partially pooled models. By 
combining data from both repeatedly sampled and sparsely sampled datasets, my model achieves a balance between 
individual and population-level estimates. This partial pooling regularizes effect estimates towards the population 
mean, with the degree of regularization depending on the precision and magnitude of the individual estimates. 

Drawing parallels to Gelman and Hill’s analysis of radon exposure across U.S. counties , my model similarly 
demonstrates that counties (or studies, in my context) with fewer observations experience more substantial 
regularization, pulling their estimates closer to the overall population mean. In my apixaban case study, the effect of 
weight on clearance rate, for example, is moderated by the pooled estimates, benefiting from the increased precision 
provided by the combined datasets. This regularization strategy effectively reduces variance in the estimates, 
potentially lowering the root mean squared error and enhancing predictive performance. 

5.6. Limitations 

Despite the strengths of my Bayesian hierarchical model, several limitations warrant consideration: 

• Study-Specific Variables: The repeatedly sampled data originate from a study on patients with Non-Alcoholic 
Fatty Liver Disease (NAFLD), a variable not collected in the sparsely sampled data. Although the repeatedly 
sampled study did not find a statistically significant effect of NAFLD on apixaban pharmacokinetics , excluding 
this variable may overlook subtle influences that could affect the pooled estimates. 
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• Assumption of Zero Time Delay: For sparsely sampled patients, I assumed a time delay (δ j , 2 ) of zero due to 
the limitation of having only a single measurement. In reality, the time delay is likely non-zero, and this 
assumption may introduce additional variability or bias in the estimation of other pharmacokinetic parameters. 

• Demographic Differences Between Studies: The two studies have distinct demographic profiles, with the 
repeatedly sampled group being younger, healthier, and having better kidney function on average compared to 
the sparsely sampled group. This discrepancy may challenge the appropriateness of a linear covariate effect 
model, potentially leading to extrapolation beyond the range of the data. Flexible modeling approaches, such 
as using splines or incorporating interactions, may be necessary to capture non-linear relationships and 
interactions between covariates. 

• Computational Complexity: Bayesian hierarchical models, particularly those implemented in Stan, can be 
computationally intensive, especially with large datasets or complex model structures. This may limit 
scalability and necessitate optimization techniques or increased computational resources for more extensive 
analyses. 

5.7. Future Work 

Addressing the aforementioned limitations, future research could explore the following avenues: 

• Incorporating Additional Covariates: Including variables such as genetic polymorphisms, dietary factors, or 
adherence measures could provide a more comprehensive understanding of factors influencing apixaban 
pharmacokinetics. 

• Modeling Heterogeneity of Effects: Extending the model to allow for study-specific covariate effects would 
enable the capture of between-study variability, enhancing the model’s flexibility and accuracy. 

• Flexible Functional Forms: Utilizing non-linear modeling techniques, such as splines or generalized additive 
models, could better capture complex relationships between covariates and pharmacokinetic parameters, 
reducing the risk of extrapolation. 

• Scalability Enhancements: Implementing computational optimizations, such as variational inference or 
parallel processing, could improve the model’s scalability and reduce computation time for larger datasets. 

• Validation with Additional Studies: Applying the model to a broader range of studies with varying protocols 
and populations would validate its generalizability and robustness across different clinical settings. 

5.8. Practical Implications 

The enhanced precision and reliability of covariate effect estimates from my pooled Bayesian model have significant 
implications for personalized medicine: 

• Dose Optimization: Clinicians can utilize the model’s estimates to tailor apixaban doses based on individual 
patient characteristics and concomitant medications, potentially reducing the risk of adverse events such as 
bleeding. 

• Clinical Decision Support: Integrating the Bayesian model into clinical decision support systems can provide 
real-time recommendations for apixaban dosing, enhancing patient safety and treatment efficacy. 

• Policy and Guidelines: The findings can inform updates to clinical guidelines regarding apixaban dosing, 
particularly in populations with high variability in pharmacokinetic parameters. 

• Further Research: The modeling framework can be extended to other medications with complex 
pharmacokinetics, promoting broader applications in personalized medicine.  

6. Conclusion 

In this study, I presented a hierarchical Bayesian approach to pharmacokinetic (PK) modeling, which offers a robust 
framework for integrating information from multiple studies, including both controlled clinical trials and observational 
settings. My model allows for the incorporation of heterogeneous data sources and offers a way to synthesize 
information to achieve more reliable estimates of pharmacokinetic parameters across diverse populations. This 
integration is crucial for advancing precision medicine, where understanding individual variability in drug responses is 
of paramount importance. 

One of the main advantages of my Bayesian model is its capacity to pool information across studies while maintaining 
flexibility in parameter estimation through hierarchical structures. By doing so, my model effectively trades off variance 
for bias, which can result in more accurate predictions for population-level pharmacokinetic parameters. This behavior 
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is particularly beneficial when dealing with small sample sizes or sparsely sampled data, as the hierarchical model 
borrows strength from the entire dataset, regularizing individual study estimates towards a population mean. 

I also conducted a simulation study to demonstrate the utility of sparsity-inducing priors, such as the double exponential 
(Laplace) prior, for the identification and estimation of novel covariate effects on pharmacokinetic parameters. My 
results indicate that the model can reliably estimate the effect of novel covariates, even in scenarios with limited data. 
As expected, the use of sparsity-inducing priors results in a slight bias towards the null, which diminishes as more data 
become available. This bias-variance trade-off is similar to the phenomenon observed with regularization techniques 
like the LASSO and James-Stein estimators, where a small amount of bias is tolerated in exchange for a substantial 
reduction in variance and overfitting. Such trade-offs are advantageous when the goal is to uncover new avenues for 
research rather than obtain precise estimates of known effects. 

my application of the model to apixaban pharmacokinetics highlighted its practical utility in analyzing complex datasets. 
By integrating data from two distinct sources—one from a controlled clinical trial and the other from an observational 
study— I was able to derive more nuanced inferences regarding the effect of concomitant amiodarone on apixaban 
bioavailability. My findings are consistent with those of previous studies, suggesting an increase in apixaban 
concentration with concomitant amiodarone usage. However, my model’s hierarchical structure and Bayesian 
framework allowed us to propagate uncertainty more comprehensively through the pharmacokinetic measures of 
interest, leading to credible intervals with potentially better coverage for individual predictions. 

The model I proposed can be extended in several ways. One potential extension would involve modeling the 
heterogeneity of effects between different studies. For instance, rather than assuming that covariate effects (e.g., the 
effect of weight on clearance) are identical across studies, a hierarchical structure could be added to allow for random 
effects that capture between-study variability. This would result in an even more flexible model capable of explaining 
additional variability that may arise from study-specific differences. However, due to the limited number of studies in 
my dataset, such an extension was not pursued in this work, as reliable estimation of between-study variability would 
be challenging. 

In conclusion, my hierarchical Bayesian model provides a powerful tool for pharmacokinetic modeling and covariate 
exploration. By pooling information across multiple studies and incorporating sparsity-inducing priors, the model 
achieves a balance between bias and variance that is suitable for both prediction and discovery. Future research 
directions include further extending the model to accommodate the heterogeneity of effects, exploring the use of 
flexible, functional forms such as splines, and applying the model to more complex datasets that include diverse patient 
populations and covariate structures. Such advancements will enhance the model’s capability to support personalized 
medicine by providing deeper insights into the factors that influence drug pharmacokinetics and dynamics 
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