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Abstract 

Background: One of the most prevalent tropical illnesses that impact people is dengue. Dengue and dengue 
hemorrhagic fever (DF/DHF) have become much more common within the past few decades. The purpose of this study 
is to use the local Moran's I statistic to identify any spatial clustering of dengue hemorrhagic fever in Ho Chi Minh City, 
Vietnam, during the months of June through July of 2023.  

Methods: The data distribution was first examined using descriptive statistics. The spatial clustering of dengue 
hemorrhagic fever over these four months was then examined using the global Moran's I statistic, Moran's I scatterplot, 
and local Moran's I statistic. More precisely, using the local Moran's I statistic, dengue hemorrhagic fever clusters (high-
high and low-low) and geographical outliers (low-high and high-low) were found in Ho Chi Minh City.  

Results: It was discovered that DHF infection rates in Ho Chi Minh City likely to rise gradually between June and July of 
2023. High-high spatial clustering of DHF infection rates was primarily found in urban areas and the city centre, despite 
the fact that this pattern has rapidly changed.  

Conclusions: The results of this investigation showed that Ho Chi Minh City has statistically significant spatial clusters 
of DHF. The findings of this investigation further show that local Moran's I statistic is validated in the context of studying 
the spatial clustering of infectious diseases in general and DHF in particular. The research findings offer valuable 
insights into the knowledge of the dissemination of DHF. 
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1. Introduction

Any of the four dengue serotypes can cause dengue, an endemo-epidemic viral disease spread by mosquitoes. With 
Aedes aegypti serving as the primary vector, it is currently the most significant arthropod-borne viral illness in terms 
of morbidity and mortality (1). In recent decades, dengue has grown to be a serious global public health issue. Globally, 
dengue is the most common arboviral illness in humans. Four antigenically similar serotypes of Dengue viruses (DENV) 
co-circulate as members of the genus Flavivirus and family Flaviviridae (DENV-1, −2, −3, and −4) (2). Dengue 
hemorrhagic, dengue hemorrhagic fever (DHF), and the most serious and potentially lethal dengue shock syndrome are 
among the clinical symptoms of dengue (3). Dengue and dengue hemorrhagic fever (DF/DHF) have become much more 
common within the past few decades. Currently, over 100 nations have recognised dengue, and 2.5 billion people reside 
in dengue-prone areas. Globally, there are an estimated 50–100 million cases of DF and 250–500 000 cases of DHF per 
year (1). When female Aedes mosquitoes, such as Aedes albopictus and Aedes aegypti, bite humans, they can transmit 
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the dengue virus. There is a higher chance of serious consequences following infection with a certain serotype of DENVs 
(4). 

A crucial tool for analysing the spatial pattern of spatial objects is a spatial statistic. (5). In accordance with Tobler's 
First Law of Geography, epidemiological research have effectively used commonly used statistics for spatial auto-
correlation analysis, such as global spatial statistics (Moran's I, Getis-Ord G* and Geary's C) and local indicators of spatial 
association (LISA) (6–9) in general, and in the investigation of COVID-19's transmission (10–12) and hand-foot-and-
mouth disease (13,14) in particular. In keeping with this notion, popular statistics for geographical auto-correlation 
analysis, including global spatial statistics, have been effectively applied in infectious disease epidemiological studies 
(6–9) like the hand, foot, and mouth disease and COVID-19. For instance, the research of COVID-19 dissemination has 
made extensive use of these spatial information (10–12). More specifically, a study on spatial analysis and hotspots 
identification of COVID-19 utilising GIS (March and April, 2020) was successfully completed using spatial statistics (15) 
whereas Anselin local Moran's I indices and hot spot analysis were subsequently used to precisely identify high- and 
low-risk COVID-19 clusters worldwide. The locations of (visited) COVID-19 cases, for example, have been demonstrated 
most recently to be among the various COVID-19-related data that may be regarded as a form of spatial object with a 
spatial dimension that can be mapped using a GIS (5). Thus, spatial COVID-19 dispersed over Oman was also effectively 
evaluated with the aid of GIS approaches (16) whereas five geospatial methods were used in the assessment inside a 
GIS framework: a weighted mean centre, standard deviational ellipses, Moran's I autocorrelation coefficient, Getis-Ord 
General-G high/low clustering, and Getis-Ord G* statistic were used to examine the spatiotemporal distribution of 
COVID-19 in Oman (16). Furthermore, numerous efforts have been made to employ spatial statistics in research on the 
transmission of hand, foot, and mouth disease. For example, it was effective to determine the spatiotemporal 
distribution and hotspots of hand, foot, mouth disease (HFMD) in northern Thailand (17). In China, between 2008 and 
2011, spatial clustering and a shifting trend in hand-foot-mouth disease were discovered (18). In Qinghai Province, 
China, LISA was effectively used from 2009 to 2015 to look at the epidemiological characteristics and geographic 
clusters of hand, foot, and mouth disease (19). Furthermore, utilising data from 2008 to 2011 at the provincial and 
county/district levels in China, exploratory spatial data analysis (ESDA) was utilised to perform spatial statistical 
analyses on geographical clustering and changing trend of the HFMD (18). Recently, the phenomena of HFMD outbreaks 
in Thai Land from 2003 to 2012 has been successfully explained by general statistics and spatial-temporal analysis using 
a GIS-based method (17). From 2008 to 2012, mainland China's counties' spatiotemporal cluster patterns of HFMD were 
examined using both local and global spatial autocorrelation analysis (20). In light of the findings from the COVID-19 
and hand, foot, and mouth disease investigations, spatial statistics will be used in this study to investigate the spatial 
clustering of dengue hemorrhagic fever. 

This study's objective is to examine the spatial clustering of dengue hemorrhagic fever in Ho Chi Minh City, Vietnam, 
from June to July of 2023. We will use the global, scatterplot, and local versions of the Moran's I statistic to identify 
spatial clustering of dengue hemorrhagic fever throughout these four months. More specifically, using the local Moran's 
I statistic, dengue hemorrhagic fever clusters (high-high and low-low) and geographical outliers (low-high and high-
low) will be found in Ho Chi Minh City. 

2. Materials and methods 

2.1. Materials  

In Vietnam, dengue hemorrhagic fever is still a dangerously new arboviral illness. DHF is endemic in Vietnam, with an 
estimated 1.6 million cases occurring annually in urban and periurban areas (21). Previous studies have shown that all 
four DENV serotypes had circulated in Vietnam at some point, with DENV-1 and DENV-2 being the most often detected 
serotypes, as is normal in hyperendemic nations (22). The dengue virus poses a major threat to public health around 
the globe. Ho Chi Minh metropolis, the largest metropolis in Vietnam, saw its largest DENV outbreak in over a decade. 
Significant morbidity and mortality result from it in hyperendemic countries like Vietnam (23). According to reports, 
DENV-1 was the most common serotype in Ho Chi Minh City and the surrounding areas until 2018 (23). A significant 
DENV outbreak in 2022 was in Ho Chi Minh City. The Ho Chi Minh Centre for Disease Control (HCDC) reported 78,561 
dengue cases there. As a result, the analysis of the spatial clustering of DHF in Ho Chi Minh City was the main objective 
of this investigation. 

Analysis of the spatial clustering of DHF incidence in Ho Chi Minh City was conducted using a dataset of DHF incidence 
that was gathered between June and September of 2023. The HCMC Centre for Disease Control (HCDC) website provided 
data on DHF incidence throughout these months. High DHF prevalence was found in Ho Chi Minh City's metropolitan 
areas, while low and extremely low DHF incidence was found in the suburbs to the north and south of the city. 



World Journal of Biological and Pharmaceutical Research, 2023, 05(02), 038–048 

40 

2.2. Methods  

2.2.1. Descriptive statistics 

Summaries of the sample or population data are given via descriptive statistics. The field of descriptive statistics is 
characterised by the application of specific quantitative techniques to provide an overview of a sample's features. It is 
beneficial to offer clear and concise descriptions of the observations and the sample using statistics such as variance, 
mean, median, and charts. Data with a single variable are described using univariate descriptive statistics. Simply put, 
descriptive statistics are the numerical or graphical methods used to arrange and characterise the elements or 
properties of a particular sample (24). Descriptive statistics are primarily used to characterise the middle of a score 
distribution, also known as the measure of central tendency, and the score distribution known as the dispersion or 
variance (24). Descriptive statistics are also concise informational coefficients that provide an overview of a certain 
data collection, which may be a sample of the population or a representation of the complete population. By outlining 
the correlation between the variables in a sample or population, descriptive statistics help organise and summarise data 
(25). Measurements of central tendency and measurements of variability (spread) are the two categories into which 
descriptive statistics fall. Nominal, ordinal, interval, and ratio variables are among the types of variables included in 
descriptive statistics, along with measures of frequency, central tendency, dispersion or variation, and location (25). 
The standard deviation, variance, minimum and maximum variables, kurtosis, and skewness are measurements of 
variability, whereas the mean, median, and mode are measures of central tendency. The mean and median have been 
the most often utilised metrics among them in numerous quantitative research projects (26,27). Commonly used 
descriptive statistics, like the mean and median, were used in this work to calculate the local Moran's I statistic and 
quantify the central tendency of DHF incidence. Measures of centre, such as the mean, median, and mode, are the most 
well-known categories of descriptive statistics and are applied to practically every level of mathematics and statistics. 
One way to think about the median for a set of numerical data is as the middle number. The central observation that 
results from sorting the data in ascending order is called the median. By adding up each figure in the data set and 
dividing the result by the total number of figures in the collection, one can determine the mean, or average. Summing 
together all of the data values and dividing the result by the total number yields the arithmetic mean. Usually referred 
to as the mean or average, it is determined by the following formula: 

𝑥 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 ……………..(1) 

The sample standard deviation (SDEV), when derived from a population sample, quantifies the degree to which the 
sample data deviates from the sample mean. The variance's positive square root is the standard deviation. Compared 
to variance, standard deviation is a more useful tool for analysing variability in a data collection. The formula is used to 
calculate it: 

𝑆𝐷𝐸𝑉 = √
1

𝑛−1
∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ……………..(2) 

The statistical dispersion, or the spread of the data, is measured by the interquartile range (IQR). Other names for the 
IQR include the middle 50%, H spread, fourth spread, and midspread. It is described as the variation in the data's 75th 
and 25th percentiles. It is provided by Q3−Q1, in which: 

𝑄1 =
(𝑛+1)𝑡ℎ

4
……………..(3) 

𝑄3 =
3(𝑛+1)𝑡ℎ

4
……………..(4) 

Since the IQR calculates the range of the middle half of the data, extreme observations have less of an impact on it. The 
spread of the middle half of the data distribution is shown by the interquartile range. 

2.2.2. Global Moran’s I statistic 

The global Moran's I indicates whether spatial autocorrelation is present overall or not. In order to determine the global 
spatial clustering of dengue hemorrhagic fever incidence, this study used the global Moran's I statistic (28,29). Equation 
represents the definition of the global Moran's I statistic (4): 

𝐼 =
𝑛

𝑆0

∑ ∑ 𝑊𝑖𝑗(𝑥𝑖−𝑥̅)(𝑥𝑗−𝑥̅)
𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑊𝑖𝑗
𝑛
𝑗=i

𝑛
𝑖=1 ∑ (𝑥𝑖−𝑥̅)

2𝑛
𝑖=1

……………..(5) 
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where 𝑥𝑖  and 𝑥𝑗  are the dengue hemorrhagic fever incidence for district i and district j; 𝑥̅ is the mean of the dengue 

hemorrhagic fever incidence and be given by 𝑥̅ = ∑
𝑥𝑖

𝑛

𝑛
𝑖=1 ; n is the total number of districts in the whole study area; and 

𝑊𝑖𝑗  is a (𝑛 × 𝑛) spatial weight matrix (30). 

The global Moran's I coefficient values are in the interval [-1, +1] (30). When there is positive geographic autocorrelation 
in the data, global Moran's I values are positive; conversely, when there is negative spatial autocorrelation, global 
Moran's I values are negative (31). The DHF distribution shows no signs of randomness or regional autocorrelation 
when global Moran's I coefficient values are near zero. 

2.2.3. Local Moran’s I statistic 

Since the local Moran's I statistic is one of the LISA statistics that is most frequently employed in research, this study 
used it to measure the spatial clustering of low and high dengue hemorrhagic fever incidence in each district (30). The 
following formula provides the local Moran's I statistic (𝐼𝑖) of dengue hemorrhagic fever incidence at district i (32): 

𝐼𝑖 =
(𝑥𝑖−𝑥̅)

𝜎2
∑ 𝑊𝑖𝑗(𝑥𝑗 − 𝑥̅)𝑁
𝑗#𝑖,𝑗∈𝐽𝑖

……………..(6) 

where 𝑥𝑖 , 𝑥𝑗 , 𝑥̅, and 𝑊𝑖𝑗  are defined in equation (1); 𝑁 is the total number of neighborhood districts (30); 𝐽𝑖  denotes the 

neighborhood set of dengue hemorrhagic fever incidence at district i; 𝑗#𝑖 implies that the sum of all (𝑥𝑗 − 𝑥̅) of nearby 

neighbourhood districts of district i but not including 𝑥𝑗; and 𝜎2 is the variance of 𝑥, given in equation (3). 𝑊𝑖𝑗  defines 

neighbor connectivity and can be constructed using first or second order of contiguity (Figure 2). 

𝜎2 =
1

𝑁
∑ (𝑥𝑖 − 𝑥̅)𝑁
𝑗=1 ……………..(7) 

If 𝐼𝑖  follows a normal distribution, the statistical significance of Moran's I statistic can be examined, and the Z-scores can 
be ascertained as follows:  

𝑍𝐼𝑖 = −
𝐼𝑖−𝐸(𝐼𝑖)

√𝑉𝑎𝑟(𝐼𝑖)
……………..(8) 

where: E(𝐼𝑖) and Var(𝐼𝑖) are the arithmetic expectation and variance of the Moran statistic at district i, respectively, and 
are expressed using by the following equations:: 

𝐸(𝐼𝑖) = −
𝑤𝑖

𝑛−1
……………..(9) 

𝑉𝑎𝑟(𝐼𝑖) = 𝐸(𝐼𝑖
2) − [𝐸(𝐼𝑖)]

2 =
𝑤𝑖(2)(𝑛−𝑏2)

𝑛−1
+

2𝑤𝑖(𝑘ℎ)(2𝑏2−𝑛)

(𝑛−1)(𝑛−2)
+

𝑤𝑖
2

(𝑛−1)2
……………..(10) 

with: 

𝐸(𝐼𝑖) = −
𝑤𝑖

𝑛−1
……………..(11) 

𝑉𝑎𝑟(𝐼𝑖) = 𝐸(𝐼𝑖
2) − [𝐸(𝐼𝑖)]

2 =
𝑤𝑖(2)(𝑛−𝑏2)

𝑛−1
+

2𝑤𝑖(𝑘ℎ)(2𝑏2−𝑛)

(𝑛−1)(𝑛−2)
+

𝑤𝑖
2

(𝑛−1)2
……………..(12) 

𝑤𝑖 = ∑ 𝑤𝑖𝑗(𝑑)
𝑛
𝑗=1 ……………..(13) 

𝑏2 = [
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)4𝑛
𝑖=1 ] [

1

𝑛
∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ]

−2

……………..(14) 

𝑤𝑖(2) = ∑ 𝑤𝑖𝑗(𝑑)
2𝑛

𝑗=1 ……………..(15) 

2𝑤𝑖(𝑘ℎ) = ∑ ∑ 𝑤𝑖𝑘(𝑑)𝑤𝑖ℎ(𝑑)
𝑛
ℎ=1
ℎ≠𝑖

𝑛
𝑘=1
𝑘≠𝑖

……………..(16) 

It can be seen that the level of spatial clustering of dengue hemorrhagic fever incidence at each district is indicated by 
local Moran's I statistic. Similar to the global Moran’s I statistic, the local Moran’s I value at district i (𝐼𝑖) also ranges 
between -1 and +1 (30). A high positive 𝐼𝑖  shows the district i has a similarly high or low number of dengue hemorrhagic 
fever incidence cases as its neighbors and called the ‘‘spatial cluster’’(31). 
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3. Results and discussions 

3.1. Spatial distribution of DHF incidence  

Table 1 provided a summary of the DHF infection rates per 100,000 persons. The boxplots in Figure 1 and the maps in 
Figure 2 displayed the distribution of DHF incidencet. According to data in Table 1, the average monthly increase in the 
number of DHF cases (or DHF infection rate) has been between 8.4 and 11.9, on average. Month by month, the DHF 
incidence dispersion also rose, with corresponding IQR and SDEV values of 4 and 6, and 4.1 and 5.7, respectively. The 
majority of districts had low DHF infection rates (median is smaller than mean), according to data from the boxplots in 
Figure 2. In the meantime, data from the boxplots in Figures 2-a and b revealed that most districts had a high rate of 
DHF infections (median is higher than the average value). Consequently, it is evident that from June to July of 2023, the 
city's DHF infection rate tends to rise gradually.  

Table 1 Statistical descriptives for dengue hemorrhagic fever 

Time periods Statistical descriptives 

Min Mean Median Max Q1 Q3 IQR SDEV 

June 0 8.4 8 20 8 12 4 4.1 

July 3 11.9 11.5 28 8 14 6 5.7 

 

 

Figure 1 Boxplots of dengue hemorrhagic fever incidence  

Figure 2's data indicates that while low DHF infection rates were found in suburban areas to the north and south of the 
city, high DHF infection rates were primarily found in the city's central districts. Specifically, there was a trend towards 
an increase in infection rates over time in metropolitan areas. High infection rates in June were mostly found in the 
city's west. Consequently, it is evident that the areas with high DHF infection rates underwent constant alteration. 
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 Figure 2 Equal intervals maps of dengue hemorrhagic fever incidence  

3.2. Moran’s I scatterplot 

The degree of globally geographic autocorrelation of dengue hemorrhagic fever in June and July of 2023 is depicted by 
data from Moran scatter plots in Figure 3. In these months, the global Moran's I statistic yielded values of -0.13 and -
0.23, respectively. Overall, there was negative autocorrelation between the DHF infection rates in these districts over 
the course of four months, as indicated by the negative global Moran values.  

 

Figure 3 Moran’s I scatterplots of DHF incidence  

3.3. Analysis of spatio-temporal clustering of DHF 

Data from boxplots in Figure 4 demonstrate the spatial distribution of local Moran's I coefficients collected in June and 
July. A statistical summary of their associated descriptive statistics may be found in Table 2. Table 1 presents data 
suggesting that there was negative geographical auto-correlation for DHF infection rates during these months, as 
indicated by the minimum values of the local Moran's I statistic. The local Moran's I median values, which ranged from 
-0.03 to -0.01, were nearly all centred at zero. June had the lowest value of the local Moran's I statistic throughout these 
two months, measuring -1.83. The maximum value of local Moran's I statistic was also detected in June with a value of 
0.44. The values of the IQR and SDEV increased from June to July, according to measures of central tendency, with 
corresponding values falling into the ranges of [0.29; 0.34] and [0.44; 0.66], respectively. The data in Figure 4-a's 
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boxplots demonstrates how June's Moran's I index was comparatively uniformly distributed. This demonstrates that 
the distribution of the Moran's I value was quite even on either side of the -0.01 median. In the meantime, several of the 
Moan's I statistic's values were below mean values, as evidenced by the July Moran's I coefficients, which were skewed 
below the median. 

Table 2 Statistical descriptives for local Moran’s I statistic 

Time periods Statistical descriptives 

Min Mean Median Max Q1 Q3 IQR SDEV 

June -1.83 -0.12 -0.01 0.44 -0.25 0.03 0.29 0.44 

July -2.8 -0.22 -0.03 0.34 -0.23 0.09 0.33 0.66 

 

 

Figure 4 Local Moran’s I statistic: (a) boxmap and (b) boxplot  

According to data from the Boxmap (hinge = 1.5) in Figure 5, low Moran's I values were primarily found in the city's 
eastern and southern regions in June, while high Moran's I values were primarily found in the city's northern and 
western districts (Figure 5-a). In July, high values of the local Moran's I statistic were found in the western districts, but 
low values were also found in the southern districts.  
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Figure 5 Boxmap of DHF incidence  

Figure 6 displayed the spatial clusters of DHF incidence derived from the local Moran's I statistic. Spatial clusters were 
primarily found in the city centre, according to data from the local Moran's I cluster map, which is seen in Figure 4. In 
June 2023, only a low-high spatial cluster was located in the eastern part of the city, and statistically insignificant results 
were found in the 21 remaining districts (Figure 6-a). This indicates a distinctive change in the dynamics of spatial 
clusters from June to July. Although there were substantial DHF infection cases in some districts, including as District 1 
(20 cases/100,000 people), Binh Chanh, and Binh Tan (12 cases/100,000 people), no spatial clusters were discovered 
in these locations. In the meantime, in July 2023, one low-high spatial anomaly cluster, one low-low spatial cluster, and 
one high-high spatial cluster were found. Nineteen districts were judged to be statistically insignificant at the 0.05 level 
during the month of July (Figure 6-b). As a result, the DHF spatial cluster migrated from the east towards the city centre 
as compared to those collected in June. District 4 (12 cases/100,000 people), Tan Binh (9 cases/100,000 people), and 
District 7 (9 cases/100,000 people) all had high-high, low-low spatial clusters as well as low-high spatial outliers. 
However, in districts with high infection rates, such District 1 (28 cases/100,000 people), Nha Be (22 cases/100,000 
people), and District 8 (18 cases/100 people), no spatial clusters were found.  

 

Figure 6 Local Moran’s I cluster maps of dengue hemorrhagic fever incidence 

 The statistical significance levels for DHF infection rates from June to July in each district of Ho Chi Minh City in 2023 
are displayed using data from significant maps in Figure 7. Four statistical levels were displayed: statistically significant 
at the 0.05, 0.01, and 0.001 levels, and statistically unsignificant (> 0.05). Data from Figure 7-a shows that, at the level 
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of 0.005, just one district was deemed to have statistical significance in June. Two districts were found in July at the 0.05 
level of statistical significance. (Figure 7-b).  

 

 Figure 7 Significant maps of dengue hemorrhagic fever incidence 

4. Conclusion 

The goal of this study is to examine the spatial clustering of dengue hemorrhagic fever in Ho Chi Minh City, Vietnam, 
during the months of June through July of 2023. Initially, the data distribution was studied using descriptive statistics. 
The spatial clustering of dengue hemorrhagic fever over these four months was examined using the global Moran's I 
statistic, the Moran's I scatterplot, and the local Moran's I statistic. More specifically, using the local Moran's I statistic, 
dengue hemorrhagic fever clusters (high-high and low-low) and geographical outliers (low-high and high-low) were 
found in Ho Chi Minh City. In Ho Chi Minh City, it was discovered that DHF infection rates tend to rise gradually between 
June and July of 2023. High-high geographical clustering of DFH infection rates was primarily found in urban areas and 
the city centre, despite the fact that the spatial clustering of DHF infection rates has rapidly changed. The results of this 
investigation showed that Ho Chi Minh City has statistically significant spatial clusters of DHF. The findings of this 
investigation further show that local Moran's I statistic is validated in the context of studying the spatial clustering of 
infectious diseases in general and DHF in particular. The information gathered from this research will not only help us 
understand how DHF spreads better, but it can also significantly aid in the fight against dengue hemorrhagic fever. 
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